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ABSTRACT
Estimating failure probability becomes a fundamental task in many

complex engineering designs and optimizations. Yet, evaluation of

failure probability via direct sampling from a given system can be

computationally expensive and sometimes impossible. Although

the construction of a response surface/surrogate could reduce such

computational cost, reliance on its sampling alone may still yield

an erroneous estimate of the failure probability. In this paper, we

employ generalized polynomial chaos and develop an adaptive

method whose surrogate model evolves with the additional data

sampled from the underlying system as the iteration proceeds. It is

more flexible by not requiring an accurate surrogate model in priori.

Via three distinct numerical examples and one practical problem on

a spintronic device, we demonstrate that our novel scheme provides

an efficient tool to estimate system failure probability.

CCS CONCEPTS
• Mathematics of computing → Probabilistic algorithms; •
Applied computing→Mathematics and statistics; •Comput-
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1 INTRODUCTION
Estimating system reliability is a fundamental task in many fields,

ranging from integrated circuit design to financial risk assessment.

In essence, it involves the evaluation of multivariate integrals in

domains defined by failure modes. As systems become ever more

sophisticated with increasing complexity and a number of compo-

nents/parameters, computing system failure probability becomes

an ever more daunting task.

Over the past years, many efforts have been devoted to design-

ing efficient algorithms to estimate failure probability and can be

generalized into three categories, namely, sampling, non-sampling,

and response surface methods. The former includes the widely pop-

ular Monte Carlo sampling (MCS) and its improvements, such as

directional sampling [4, 10, 31, 34], (adaptive) importance sampling

[1], line sampling [26] and subset simulation [2]. In general, they

approximate system failure probability by counting the number of

samples within the failure domain. Despite its easy implementation,

such a direct approach may incur prohibitively high computational

cost due to: 1) low convergence rate for a reliable system defined

by small failure probability, 2) high simulation cost of each realiza-

tion for complex systems. Yet, this approach becomes ineffective

when the data is limited, which is common for many practical

applications.
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To circumvent this data-poor scenario, researchers have devel-

oped non-sampling approaches, among which First Order Relia-

bility Method (FORM) and the Second Order Reliability Method

(SORM) are two popular frameworks [6, 13, 17–19, 23, 24, 27, 49].

In those methods, the objective is to find the limit state function

that separates “failure" and “safe" regions. By first identifying the

most probable points (MPP), e.g., the closest geometrical points on

the limit state function to the origin of the standard Gaussian space,

the limit state function can be approximated as a linear function

(in FORM) or a quadratic function (in SORM) close to the MPP.

The resultant integral can be further simplified using asymptotic

methods. Since approximations are made in many stages, FORM

and SORM are effective for linear and weakly nonlinear systems,

especially in their asymptotic regimes [38, 40, 41].

Response surface method (RSM) [5, 12, 45] is an alternative ap-

proach that combines themerits of both sampling and non-sampling

methods. Its main objective is to build an approximation (the re-

sponse surface) of the limit state function using a reduced number

of data from the original system. Failure probability can be then

estimated by directly sampling the response surface instead, usu-

ally in the analytical form of a multivariate polynomial. It is widely

acknowledged that successful construction of the response surface

is crucial to the method’s accuracy and has been the focus of many

recent studies, including methods based on experiment design [16],

regression[22], statistical approach [14] and the generalized poly-

nomial chaos (gPC)[36, 37]. However, one must note here that the

overall accuracy may not necessarily depend on the accuracy of

the response surface. As shown in an earlier study [28], the above-

mentioned direct RSM approach can still lead to considerable error

in estimating the failure probability, “no matter how accurate the

surrogate model is".

To improve the robustness of the RSM, the hybrid approach [28]

has since been proposed and widely used [7, 21]. It divides the

overall parameter (probability) space into two regions: one “away”

from the limit state function where the response surface (surrogate)

can be employed; the other “close” to the limit state function in

which the original system is simulated to ensure global accuracy.

Since by definition, most of the samples would be in the “away"

region, the hybrid method considerably reduces the computational

cost rather than sampling the system in the entire probability space.

Although the convergence of the estimated failure probability does

not require the convergence of the response surface, a sufficiently

accurate surrogate would improve the overall efficiency. Recently,

a hierarchical neural hybrid (HNH) method was proposed in [30]

which employed neural network as a surrogate model to reduce

computational cost based on the hybrid method without losing

the accuracy. However, in practice, such model may not be readily

available and the main focus of this paper is to develop an alter-

native approach without such priori but of acceptable cost. To be

specific, we employ generalized polynomial chaos (gPC) expansion

[15, 48] to build a low-accuracy surrogate model as an initial guess

and then improve its accuracy in the estimation of failure probabil-

ity by adding more samples of the underlying system. Along the

iteration process, the order of the model is expected to increase till

a pre-defined error threshold is met.

The remainder of this paper is organized as below: in subsequent

sections, we propose a novel numerical method that modified the

hybrid approach with an adaptively-evolving gPC surrogate (up-

dated iteratively). In Section 2, we formulate the failure probability

problem and then briefly review three components that would be

used, namely, MCS, RSM, and the hybrid method (Section 3). Our

new framework and its numerical algorithm are presented in Sec-

tion 4. Its numerical efficiency is tested by three distinct numerical

experiments and one practical problem in a microelectronic device

(Section 5). Finally, our conclusion is drawn in Section 6.

2 PROBLEM FORMULATION
System reliability can often be represented by a scalar limit state

function д(Z ) of design parameters, i.e., Z = (Z1,Z2, · · · ,Znz
) :

Ω → Rnz
, whose uncertainty can be collectively treated as a

nz-dimensional random vector with known distribution function

FZ (z) = Prob(Z ≤ z). Here Ω is the probability space and z ∈ Rnz
.

The hyper-surface д(Z ) = 0 defines the limit state surface that

separates the failure domain д(Z ) < 0 and safe domain д(Z ) ≥ 0:

Ωf ≜ {Z : д(Z ) < 0}. (1)

The probability of failure Pf can be computed as

Pf = Prob(Z ∈ Ωf ) =

∫
Ωf

dFZ (z) =

∫
χΩf (z)dFZ (z), (2)

where χ is the characteristic function satisfying

χΩf (z) =

{
1 if z ∈ Ωf ,

closet0 if z < Ωf .
(3)

In essence, the limit state functionд(Z ) describes the relationship
between the inputs Z and the failure modes Ωf via the solution

of the system. However, in practice, most underlying systems are

complex/nonlinear with a large number of input parameters and

thus computationally expensive to simulate. Consequently, an ex-

plicit form of д(Z ) is often unavailable and can only be evaluated by

measurement data or direct simulation of the entire system, either

of which may incur significant costs.

3 PRELIMINARIES
In this section, we shall briefly review three important methods,

which will be incorporated into our adaptive scheme.

3.1 Monte Carlo simulation
The most straightforward method for evaluating failure probability

is Monte Carlo sampling (MCS). In MCS, one generates realiza-

tions of random inputs based on the given probability distribution,

i.e.,{z(i), i = 1, ...M} ∼ FZ , whereM is the total number of samples.

For each realization, the data is fixed and the problem becomes de-

terministic. According to the limit state д, the system output could

be examined and one can determine whether a sample is “safe" or

“failure". The MCS estimate of Pf is then computed as follows:

Pmc
f =

1

M

M∑
i=1

χ{д(Z )<0}(z
(i)). (4)

Obviously, when M → ∞, this estimate converges to the true

probability of failure Pf . Although MCS is straightforward to apply

as it only requires repetitive executions of deterministic simulations,

the solution statistics converge relatively slowly. WhenM is large,
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this can incur exceedingly large effort. Unfortunately, for Pmc
f to

be an accurate estimate, a large number of samples M ≫ 1 are

usually required, thus increasing the computational cost even for a

relatively small probability of failure.

3.2 Response surface method
One of the alternatives to circumvent the difficulty of MCS is re-

sponse surface method (RSM). In RSM, one constructs a response

surface (RS) for the limit state function and assume its availability,

i.e., we seek д̃(Z ) ≈ д(Z ) in a proper norm/metric. Then the failure

probability could be estimated as:

PRSMf =
1

M

M∑
i=1

χ{д̃(Z )<0}(z
(i)). (5)

The most important feature of this approach is that it eliminates

the need to sample the true underlying system since the sampling

process is conducted on the surrogate model. Hence, sampling the

surrogate could reduce computational efforts significantly and al-

low us to conduct an arbitrarily large number of sampling. However,

the accuracy of the RSM depends critically on the accuracy of the

surrogate model д̃. In many practical problems, one usually pos-

sesses a fixed surrogate model with limited accuracy. The accuracy

of the RSM estimate of Pf is thus difficult to acquire. Moreover, even

if д̃ is highly accurate withO(ϵ) error, there still exists pathological
cases where the RSM estimate of Pf can have O(1) error [28].

3.3 Hybrid method
A hybrid method using samples from both the original system (in a

“small" portion) and the surrogate model (in a “large" portion) was

proposed in [28]. It improves the accuracy of RSM by employing

a few number of original state samples from д to “correct" the

numerical error in д̃. When the absolute value |д̃ | is “small", the

algorithm replaces the samples of the surrogate д̃ by the original

state samples, as in this case the error in the surrogate д̃ may

incorrectly predict safe or failure. For a small real parameter γ > 0,

an approximate failure domain could be effectively defined as,

Ω̃f ≜ {Z : д̃(Z ) < −γ } ∪ {{Z : |д̃(Z )| ≤ γ } ∩ {Z : д(Z ) < 0}}. (6)

Following this failure domain, the sampling of the original state д is

only conducted in a subdomain of {{Z : |д̃(Z )| ≤ γ } ∩ {Z : д(Z ) <
0}}. Obviously, the more accurate the surrogate д̃ is, the smaller

the parameter γ can be, and the required number of samples of д
becomes smaller correspondingly. A practical iterative algorithm

presented in [28] demonstrates that one does not need to specify

the parameter γ . Instead, the algorithm iteratively replaces a small

number of samples of д̃ by д, progressively away from |д̃ | ≈ 0 till

convergence is reached. It was shown that the method is able to

produce a highly accurate result for failure probability even when

the surrogate model is of modest accuracy, while using a very small

number of original state samples. Error bound and convergence of

the method were also presented in [28]. More formal mathematical

analysis and extension of problems with multiple failure conditions

can be found in [29].

4 NUMERICAL SCHEME
Motivated by the above developments, we now present a novel

numerical scheme to compute the system failure probability. Similar

to the previous hybrid approach [28], the design parameter domain

would be separated into two regions: one “close" to the limit state

д(Z ) = 0, where samples of the original system are taken, and

elsewhere in the domain using samples from the surrogate model.

However, in contrast to previous works, the new scheme does not

require the availability of a priori surrogate model of the underlying

system. Instead, it builds a low-order one using gPC expansion

initially and refines iteratively by applying the hybrid method.

Unless specified, we denote S = {z(i)}Mi=1 as the “candidate set",
a sample set generated from the probability distribution FZ and

M is the total number of samples. Let k be the iteration count

and ∆M be “step size", i.e., an integer value much smaller thanM
during the iteration. ∆M0

is the upper bound of sample increment

during each iteration. We will use S(k) ⊂ S to denote the subset

at iteration step k , where the values of the true limit state д are

known. Correspondingly, S̃(k ) = S\S(k ) is its complement, where

the original state д are not known but the surrogate state д̃ are

known.

The main algorithm of our adaptive method consists of the fol-

lowing major steps summarized in Algorithm. 1.

Algorithm 1 Overall scheme for failure probability estimation

At time step k = 0:
• Construct a low-degree gPC surrogate model д̃(0) using non-
intrusive stochastic collocation approach.

At time step k ≥ 1:
• Adaptively refine the surrogate model д̃(k) with increasing
number of original state samples.
• Evaluate the failure probability using the updated model.
• Check the stopping criterion.

Repeat iteration step till convergence.

In the subsequent section, we will review how to construct our

surrogate model using the gPC expansion (Section 4.1) and then

details of the adaptive scheme in Section 4.2.

4.1 Construction of surrogate model
In our method, the construction of the surrogate model is a critical

step that affects the overall accuracy. To meet such demand, we

adopt the mathematically rigorous gPC approach [47] with estab-

lished convergence rate and error analysis.

In a nutshell, the limit state function can be approximated by a

ngth-degree gPC expansion

д(Z ) ≈ д̃(Z ) =

ng∑
|i |=0

ciΦi(Z ), (7)

where i = (i1, i2, · · · , inz
) ∈ Nnz

0
is a multi-index with |i| = i1 + i2 +

· · · + inz
, ng denotes a non-negative integer and {ci} are the expan-

sion coefficients. {Φi(Z )} are thenz-variate orthogonal polynomials
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of degree up to ng, satisfying the orthogonal relation:

E[Φi(z)Φj(z)] =

∫
Ω
Φi(z)Φj(z)dFZ (z) = δi, j, (8)

where δi, j represents the multivariate Kronecker delta function

δi, j =

nz∏
d=1

δid , jd =

{
1 if id = jd ,
0 if id , jd .

(9)

For a given distribution of the random parameter Z , one can

readily find the type of orthogonal polynomial basis {Φi(Z )} using
the orthogonality relationship (8). For instance, Gaussian random

variable corresponds to Hermite orthogonal polynomials, while

uniform distribution leads to Legendre polynomials. A detailed

discussion of hypergeometric polynomials and the Askey scheme

can be found in [25, 39, 48]. The cardinality of the polynomial space

is:

Ng =

(
nz + ng

nz

)
=

(
ng + nz

)
!

nz!ng!
. (10)

By using a single index, a linear ordering of multi-index can be

employed to express the gPC expansion (7).

д̃(Z ) =

Ng∑
j=1

c jΦj (Z ). (11)

The accuracy of the gPC method can be measured in the popular

ℓ2 norm:

∥д(Z ) − д̃(Z )∥2
ℓ2Ω

:=

∫
Ω
|д(z) − д̃(z)|2dFZ (z) → 0, ng →∞,

(12)

whose convergence rate is in tandem with the smoothness of the

limit state function д.
Given a set of Np (Np ≤ M) random parameters samples Sz ={

z(i)
}Np

i=1
and their corresponding system outputs д(Sz), the expan-

sion coefficients {c j } are the only unknowns left to complete our

surrogate model (11). Depending on the number of samples Np,

different numerical methods can be employed to compute {c j }.
Detailed discussion of those methods can be found in [46, 47]. In

this paper, we employ the least squares type stochastic colloca-

tion method [3, 11, 20, 44] to construct the gPC expansion. Let

z(1), . . . , z(Np)
be a set of sample points, g = (д(z(1)), . . . ,д(z(Np))T

be the data vector of the true limit state function. Then by solv-

ing the following minimization problem, the least squares gPC

expansion could be constructed:

min

c
∥Ac − g∥2, A = (ai j )1≤i≤Np, 1≤j≤Ng

, ai j = Φj (z
(i)).

(13)

where c = (c1, ..., cNg
)T is the coefficient vector. By applying pseudo

inverse A† of A, the solution c = A†g could be obtained with

various standard numerical solvers.

At the initialization step (k = 0), one may construct a low-order

gPC surrogate model, typically we set n
(0)
g
= 1, 2 or 3. Following

its distribution FZ , a number of Np samples for the limit state д are

randomly chosen by applying uniform probability from the total

sample set. When applying the least squares method, the number

of samples at each iteration k should be larger than the number

of gPC expansion terms, i.e., N
(k )
p
> N

(k )
g

. Empirically, we set

the oversampling ratio α = 1.5 ∼ 3 for N
(k)
p
= αN

(k )
g

. However,

in order to obtain asymptotically stable polynomial least squares

approximation [9, 32, 33], one needs the oversampling ratio to scale

as, at least, α ∼ log(N
(k)
g
). This is now a nonlinear oversampling

ratio instead of a fixed number. Both methods shall be used in our

numerical tests. Upon evaluating the true limit state д at the chosen

points, we have the subset S(0) and the newly constructed initial

gPC surrogate using least squares approach, thus obtaining д̃(0)(Z )

with degree n
(0)
g
.

4.2 Adaptive Surrogate Model
After the construction of the initial low-order gPC surrogate model

д̃(0)(Z ), our adaptive method starts an iterative procedure. At each

iteration step k , a gPC surrogate model д̃(k−1)(Z ) of degreen
(k−1)
g

≥

1 is available. Let M(k−1) = #S(k−1) be the number of samples

where the values of the true limit state д are known at the (k −1)-th

iteration. Based on д̃(k−1)(Z ), we shall adaptively enrich the current

set S(k−1) by adding additional sample set ∆S(k ) of size ∆M (when

∆M > 0) from the complement set S̃(k−1). With the new sample set

S(k ) = S(k−1) ∪ ∆S(k ), the gPC model will be refined via the least

square approach and increase the gPC order when possible. Finally,

to ensure the convergence, we shall propose the following two-step

check: (1) if the the difference of the failure probability at successive

iterations |P
(k )
f − P

(k−1)
f | is smaller than the tolerance ϵ . (2) if it

satisfies (1), we further add a ”safety check” step: we recalculate

the failure probability P̃
(k)
f by adding an additional sample set of

size ∆T to see if the resulted difference |P
(k )
f − P̃

(k )
f | is smaller than

the tolerance ϵ . We shall repeat the above steps until the two-step

stopping criterions are satisfied.

The adaptive algorithm consists of successive application of the

hybrid method and gPC surrogate refinement. Specifically, it has

the following major steps:

• Adaptive Refinement: At the k-th (k ≥ 1) iteration,

(1) Calculate the oversampling condition for the next-order

gPC refinement

– LetM(k−1) = #S(k−1), the number of samples where the
values of the true limit state д are known at the (k − 1)-th
iteration.

– Set

N
b
=

(
nz + (n

(k−1)
g

+ 1)

nz

)
=

(
(n
(k−1)
g

+ 1) + nz
)
!

nz!(n
(k−1)
g

+ 1)!
, (14)

which is the number of terms in the gPC surrogate of

one degree higher than the current order n
(k−1)
g

.

– Set R(k ) = α · N
b
is the required number of samples at

the degree of n
(k−1)
g

+ 1.

(2) Check whether the number of original state д samples

satisfies the oversampling condition for the next-order

gPC refinement and set the adaptive sample increment

∆M :

– IfR(k ) < M(k−1), increase the gPC order:n(k )
g
= n
(k−1)
g

+1

and set ∆M = 0.
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– If R(k ) > M(k−1) + ∆M0, keep the current gPC order:
n
(k )
g
= n
(k−1)
g

and set ∆M = ∆M0.
– If M(k−1) ≤ R(k) ≤ M(k−1) + ∆M0, increase gPC order:
n
(k )
g
= n
(k−1)
g

+ 1 and set ∆M = R(k) −M(k−1).
We refer more detailed discussion about this step in Re-

mark. 1.

(3) If ∆M > 0, enrich set S(k−1) with the additional samples

of size ∆M .

– Evaluate the surrogate model д̃(k−1) at the complement
set S̃(k−1), and sort {|д̃(k−1)(S̃(k−1))|} in ascending order.

– Choose the first ∆M elements in the sorted sequence of
|д̃(k−1)(S̃(k−1))| and identify their corresponding sample
locations z in S̃(k−1). Denote the collection of these samples
as set ∆S(k ).

– Evaluate the true limit state д at the samples in ∆S(k ) and
obtain д(∆S(k )).

– Update the sets S(k ) = S(k−1) ∪ ∆S(k ), S̃(k ) = S\S(k).
(4) Updated the gPC model. Construct д̃(k )(Z ) using the sample

set S(k) and n(k )
g

via least squares method (13).
(5) Estimate the failure probability

P
(k )
f =

1

M


∑

z(i )∈S̃ (k )
χ{д̃(k )<0}(z

(i)) +
∑

z(i )∈S (k )
χ{д<0}(z

(i))

 . (15)

(6) If stopping criteria is met: |P (k)f −P
(k−1)
f | < ϵ , then continue

the following steps. Otherwise, set k ← k + 1 and return to
Step 1.

• Check the accuracy of the surrogate model:
– Evaluate the updated surrogate model д̃(k) at the comple-
ment set S̃(k), and sort {|д̃(k )(S̃(k ))|} in ascending order.

– Choose the first∆T elements in the sorted sequence of |д̃(k )(S̃(k ))|
and identify their corresponding sample locations z in S̃(k ).
Denote the collection of these samples as set ∆S̃(k).

– Evaluate the true limit state д at the samples in ∆S̃(k ) and
obtain д(∆S̃(k)).

– Update the sets S(k ) = S(k ) ∪ ∆S̃(k ), S̃(k ) = S\S(k ).
– Estimate the failure probability

P̃
(k )
f =

1

M


∑

z(i )∈S̃ (k )
χ{д̃(k )<0}(z

(i)) +
∑

z(i )∈S (k )
χ{д<0}(z

(i))

 . (16)

– Check if stopping criteria is met: |P (k )f − P̃
(k)
f | < ϵ , then

exit. Otherwise, P (k )f = P̃
(k )
f .

• Set k ← k + 1 and return to the refinement step.

Remark 1. Our overall goal is to build a failuremodel with samples
as few as possible. To achieve this, we employ adaptive schemes for
both model refinement and sample enrichment strategy. To be specific,
the sample increment ∆M in step 2 of the Adaptive Refinement
Module is determined as:

• When R(k ) < M(k−1)), i.e., there is sufficient data in the cur-
rent data set S(k−1) to allow higher-order gPC model, then we
increase the gPC order by one but retain the same data set with
∆M =0.

• When R(k) ≥ M(k−1),i.e., there is insufficient data in the cur-
rent set to allow next-order gPC model:
– if R(k ) > M(k−1) + ∆M0, the gPC order is retained but
we enrich the current sample set S(k−1) with additional
∆M = ∆M0 samples. Here, ∆M0 serves as the upper bound
of sample increment to prevent rapid sample enlargement,
and thus costs, at one iteration.

– if R(k ) ≤ M(k−1) + ∆M0, the gPC order is increased by one
but we enrich the current sample set S(k−1) with additional
∆M samples. Note here ∆M = R(k ) − M(k−1) instead of
∆M0.

5 NUMERICAL EXAMPLES
In this section, we evaluate the performance of our adaptive sur-

rogate scheme through four numerical examples. Three simple

examples are taken from previous works [28]. Our primary goal is

to examine the new adaptive algorithm and compare it to the hybrid

method from [28]. We shall see that the new algorithm produces

equally accurate numerical results as the original hybrid method.

However, the present adaptive method does not require the avail-

ability of a surrogate model. More importantly, the new adaptive

algorithm is, in fact, more efficient, in terms of the required number

of samples of the true limit state, than the original hybrid method.

To measure the performance of the proposed methods, the ab-

solute errors between the computed failure probability (by our

proposed method) and the reference solutions (by MCS) will be

used. We evaluate the values on the total candidate set S by ap-

plying the updated surrogate model at the k-th iteration. Besides,

we also measure the following two kinds of classification errors to

understand the proposed method further:

• "total" classification errors: the percentage of the number of

samples (over total samples) whose signs for the limit state

are incorrectly predicted during each iteration step.

• "neg-pos" classification errors: the percentage of the number

of samples whose true values of д belong to the "failure"

region but are classified to the "safe " region by the current

surrogate model.

We remark that we conduct MCS with M = 10
6
random samples

for the first three examples to obtain reference solutions, and we

set M = 10
7
for the last practical problem due to the sufficiently

rare failure probability. For consistency, the same sequences ofM
samples are utilized in our adaptive scheme for each numerical test.

5.1 Ordinary Differential Equation
We first consider a simple example of ordinary differential equation

subject to an initial condition u0:

du

dt
= −Zu, u(0) = u0, (17)

where the decay coefficient Z is a Gaussian random variable Z ∼
N(µ,σ 2) with mean µ and variance σ 2

. The corresponding exact

solution of (17) is:

u(t ,Z ) = u0e
−Zt . (18)

We define the failure probability of the linear system (17) as

Pf = Prob [д (u(t ,Z )) < 0] , (19)
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with the limit state function д

д(u(t ,Z )) = u(t ,Z ) − u
d
, (20)

where u
d
is a given value.

Upon setting µ = −2, σ = 1, u0 = 1, t = 1 and u
d
= 0.5, the

exact failure probability can be computed as Pf = 0.003539 and

the reference solution by MCS is Pmc
f = 0.003558. We shall use the

MCS reference solution to compute the errors in our algorithm.

For this simple univariate case, we start with a linear gPC ap-

proximation (n
(0)
g
= 1) as the initial gPC surrogate model with

#S(0) = 10. Hermite polynomials are employed in the gPC surro-

gate since the random variable is Gaussian. At each iteration step,

the error tolerance ϵ is set to be 10
−6

and ∆T = 100.

The final results at the convergence with respect to the upper

bounds of sample increment ∆M0
are summarized in Table 1. The

convergence history for ∆M0 = 20 is plotted in Figure 1. We ob-

served that nearly all cases result in zero numerical errors, with

only a fraction (< 200) of data in the true limit state is used, com-

pared to the MCS reference solution using 10
6
samples and hybrid

method reference solution using 6000 samples at the degree of 7

[28]. This represents a substantial computational gain, whenever

the evaluation of the underlying system is non-trivial. The current

adaptive method is thus not only eliminating the need for a pre-

constructed surrogate model, but it is also more efficient than the

original hybrid method.

To further demonstrate the benefits by using adaptive gPCmodel,

we plot the convergence history of classification errors (based on д̃
with ∆M0 = 20) in Figure 2. We observed that the surrogate model

is becoming more capable of predicting the sign of the limit state

correctly, suggesting the effectiveness of the adaptivity.

Remark 2. For this example, based on the results of ∆M0 summa-
rized in Table 1, we observed that once the upper bound of sample
increment ∆M0 is large enough, the total samples are the same, due
to the adaptive sample increment ∆M at each iteration. This can be
further confirmed by the history of the sample increment at each
iteration shown in Figure 3.

5.2 Multivariate Benchmark
Now we consider a multivariate benchmark problem from [28]. Its

failure function is defined as:

д(X ) = X1 + 2X2 + 2X3 + X4 − 5X5 − 5X6, (21)

where Xi ∼ LN (µi ,σi ), for i = 1, 2, · · · , 6, represents 6 indepen-

dent random variables of log-normal distributions. Let {Zi }
6

i=1 be

i.i.d Gaussian random variables with N(0, 1). We employ Hermite

polynomials to approximate {Xi }
6

i=1 as

Xi =

ng∑
k=0

ci,kHk (Zi ). (22)

We adopt the definition of failure probability Pf = Prob (д(Z ) < 0)

and set the means and variances of the six random parameters as:

µ1 = 0.12,σ1 = 1; µ2 = 0.12,σ2 = 1; µ3 = 0.12,σ3 = 1;

µ4 = 0.12,σ4 = 0.5; µ5 = 0.05,σ5 = 1; µ6 = 0.04,σ6 = 1,

The reference (MCS) solution is Pmc
f = 0.653964 with 10

6
samples.

1 2 3 4 5 6

iteration

0

1

2

3

4

5

e
rr

o
r

10
-3

Figure 1: Error convergence versus iteration count of the
adaptive algorithm when ∆M0 = 20 in the ODE Example.
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Figure 2: The classification errors versus iteration count for
∆M0 = 20 in the ODE Example.

The degree of the initial gPC model is set to be n
(0)
g
= 1 using

#S(0) = 30 samples. We set the tolerance to be ϵ = 10
−6

for each

iteration step and ∆T = 100 in this test. Since this is a nz = 6 dimen-

sional expansion, the number of expansion terms Ng grows faster

at higher degree ng. We therefore employ a linear oversampling

rate of α = 2, instead of the nonlinear one. We emphasize that the

linear oversampling rate did not induce any numerical instability

in the solution, as we did not reach a very high degree in the gPC

model.

The results at the final convergence with different upper bounds

of sample increment ∆M0
of the true limit state are summarized

in Table 2. The convergence history with respect to the iteration

counts is shown in Figure 4. It can be seen that except in the case

with a small upper bound of sample increment ∆M0 = 10, the

adaptive algorithm in this example generally converges to a gPC
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Table 1: Results of the ODE Example(#S(0) = 10, ϵ = 1e − 6 and ∆T = 100 )

∆M0
Total iteration Errors Final gPC degree Total number of д samples

10 2 0.003546 2 127

20 6 0 7 184

40 6 0 7 184

80 6 0 7 184

100 6 0 7 184

1 2 3 4 5 6

iteration
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15

20

Figure 3: The sample increment ∆M versus iteration count
when ∆M0 = 20 in the ODE Example.

model at a degree of 11 with the same number of samples, and

all the cases induce negligible numerical errors. Compared with

the MCS solution using 10
6
samples, the adaptive method uses

a much lower number of samples (234), which is superior to the

performance of the hybrid method using 300 samples at the degree

of 11 [28].

Again, the corresponding classification errors based on д̃ with

respect to the iteration count for ∆M0 = 20 are plotted in Figure 5.

It clearly shows that the classification performance on the failure

samples is further enhanced as the iteration increases with the

improvement of the gPC surrogate model during the iteration.

5.3 Partial Differential Equation.
We next consider the following 1D viscous Burgers’ equation:

ut + uux = νuxx , x ∈ [−1, 1],

u(−1) = 1 + δ , u(1) = −1.
(23)

Here ν > 0 is the viscosity and δ ∈ (0, 0.01) is a small perturbation

characterized as a uniformly distributed random variable.

In this example, the solution profile exhibits a transition layer,

whose location xf is the zero of the solution profile at steady state

u(xf ) = 0. It can be computed from the equations below:

A tanh

[
A

2ν
(1 + xf )

]
= 1 + δ , A tanh

[
A

2ν
(1 − xf )

]
= 1. (24)
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Figure 4: Error convergence versus iteration count of the
adaptive algorithm when ∆M0 = 10 and ∆M0 = 20 in the
6-dimensional Example.

1 2 3 4 5 6 7 8 9 10

iteration

0

2

4

6

8

%

Figure 5: The classification errors versus iteration count for
∆M0 = 20 in the 6-dimensional Example.

The perturbation δ at the left boundary condition x = −1 may

significantly affect the value of xf . Hence the Burgers’ equation (23)
serves as a good numerical example for our adaptive scheme.
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Table 2: Results of the 6-dimensional Example(#S(0) = 30, ϵ = 1e − 6 and ∆T = 100)

∆M0
Total iteration Errors Final gPC degree Total number of д samples

10 13 3.0 × 10−6 8 208

20 10 0 11 234

40 10 0 11 234

80 10 0 11 234

100 10 0 11 234

We adopts the same definition of the limit state function used

in [28]:

д(xf (δ )) = −xf (δ ) + 0.75, (25)

and compute the failure probability Pmc
f = 0.872768 using MCS

with 10
6
samples. We set the initial degree n

(0)
g
= 2 and #S(0) = 20

for constructing our surrogate model. The oversampling ratio is

set to α = 5log(N
(k)
g
) in this case. We set an error control ϵ = 10

−6

and ∆T = 100 here.

The results with different upper bounds of sample increment

∆M0
are shown in Table 3, along with the convergence history

with respect to iteration count in Figure 6. We observe that the new

adaptive method achieves remarkable accuracy (zero numerical er-

rors) in all cases while incurring minimal computational cost (less

than 600 samples of the true limit state д). Not only is this a signifi-

cant computational gain compared to the brute force MCS (which

uses 10
6
samples), it also outperforms the hybrid sampling method

(using around 4000 samples) from [28] by a noticeable margin due

to the adaptive refinement of the underlying gPC surrogate model.

As the accuracy of the gPC surrogate improves, it further enhances

the classification performance of the hybrid method. This can be

further confirmed by the convergence history of the classification

errors with respect to the iteration counts for ∆M0 = 20 in Figure 7.
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Figure 6: Error convergence versus iteration count of the
adaptive algorithm when ∆M0 = 10, 20, 30 respectively in the
PDE Example.
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Figure 7: The classification errors versus iteration count for
∆M0 = 30 in the PDE Example.

5.4 A Microelectronics benchmark
Finally, we evaluate the performance of our adaptive scheme via

a practical problem in microelectronics. Specifically, we study the

failure probability of spin-transfer torque magnetic random access

memory (STT-MRAM), a fast-growing technology for stand-alone

and embedded memory applications [8, 42]. Since it involves a high-

frequent spin-transfer for the writing process, its failure probability,

or more precisely, the Write Error Rate (WER) is a key design

parameter for both device and large-array yield improvement [35].

The dynamics of instantaneous magnetization ( ®m) of a magnet

subject to external perturbation such as magnetic fields or spin

currents is often described by the classical Landau-Liftshitz-Gilbert

(LLG) equation [43] in normalized spherical coordinate:

(1+ λ2)
d ®m

dt
= −|Γ |( ®m × ®H ) − λ |Γ |( ®m × ®m × ®H )+ ®τ + λ( ®m × ®τ ). (26)

Themagnet of interest is assumedmono-domain and the orientation

of normalized ®m is:

®m =
[
mx my mz

]
=

[
sinθ cosϕ sinθ sinϕ cosθ

]
,

(27)

whose initiation starts at the x-z plane, i.e. ®m0 = [sinθ0 0 cosθ0].
We note that cross product operator (×) is employed in eqn (26):

®v1 × ®v2 = | ®v1 | | ®v2 | sin(ω)®n, with ω as the angle between ®v1 and ®v2,
and ®n as the unit vector perpendicular to both ®v1 and ®v2. The spin

torque is denoted as ®τ = ( ®m × ®Is × ®m)/(qNs), with
®Is = [0 0 Is] as
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Table 3: Results of the PDE Example(#S(0) = 20, ϵ = 1e − 6 and ∆T = 100)

∆M0
Total iteration Errors Final gPC degree Total number of д samples

10 38 0 21 540

20 26 0 24 523

30 23 0 25 524

40 23 0 25 524

80 23 0 25 524

100 23 0 25 524

Table 4: Results of the Microelectronics Example (#S(0) = 60, ϵ = 1e − 7, ∆T = 100 and α = 3log(N (k )
g
))

∆M0
Total iteration Errors Final gPC degree Total number of д samples

10 34 0 4 580

20 22 0 4 694

50 11 0 4 624

80 11 0 5 937

100 11 0 5 977

Table 5: Results of the Microelectronics Example (#S(0) = 60, ϵ = 1e − 7, ∆T = 100 and α = 5log(N (k )
g
))

∆M0
Total iteration Errors Final gPC degree Total number of д samples

10 29 0 3 640

20 19 1.0 × 10−7 3 640

50 17 0 4 923

80 11 0 4 883

100 10 1.0 × 10−7 4 1023

electrical current and q as the charge of an electron. Ns is the total

number of spins in the nano-magnet and defined as: Ns = MsV /µB,
whereMs is saturation magnetization, V refers to the volume and

µB is the Bohr magneton. The gyromagnetic ratio is represented by

Γ, and the Gilbert damping parameter λ is magnet-specific which

is often determined from experiment. Finally, the internal fields on

the magnet is assumed as ®H = [0 − hdmy mz ], where hd is the

dimensionless demagnetizing field while no heat is applied here.

In this study, all quantities are taken as dimensionless by using

the constant Ms/(2kuΓ) with saturation magnetization Ms = 780,

the unidirectional anisotropy constant ku = 3.14e4 and Γ = 1.76e7.

Other parameters are set as hd = 0, λ = 0.007, V = 2.72e−17 and

µB = 9.274e−21. The LLG equation (26) is numerically computed

by a variable order Adams-Bashforth-Moulton PECE solver [43].

Three random parameters, initial azimuth angle θ0, current mag-

nitude Is, and period of interest (final time) T are considered and

each is prescribed with the Beta distribution of β(3, 1). Conse-
quently, our gPC surrogate model consists of Jacobi polynomi-

als of three dimensions (Nz = 3). The failure domain is set as

θ (t = T ) = θT < π/2 while θT ≥ π/2 is considered “safe". The

reference MCS solution is computed as Pmc
f = 0.0000892 with 10

7

samples. In the adaptive scheme, we set the initial gPC order as

n
(0)
g
= 3 with #S(0) = 60 samples. An error control is set to be

ϵ = 10
−7

and ∆T = 100 here. We test two oversampling ratios:

α = 3log(N
(k )
g
) and α = 5log(N

(k)
g
). Results at convergence are

shown in Table 4 and Table 5 using different ∆M0
. And the conver-

gence history with respect to iteration count for ∆M0 = 20, 80, 100

when α = 3log(N
(k)
g
) is plotted in Figure 8. In all cases, our adaptive

scheme ends up with a gPC model with degree ≤ 5 and converges

quickly to (nearly) zero numerical errors with a much less number

of samples, which is roughly 0.01% of those via the traditional MCS

method (10
7
samples).

We conclude that the new adaptive method achieves remarkable

accuracy in all cases, while incurring a minimal computational cost.

We emphasize again that the current method does not require a

pre-defined surrogate model. Therefore, our adaptive method offers

much more flexibility for practical applications.

6 SUMMARY
In this paper, we propose an efficient adaptive numerical scheme

to estimate the probability of system failure. The method combines

the idea of surrogate-based hybrid method in [28] and generalized

polynomial chaos (gPC) expansion. We start by constructing a

low-degree gPC expansion as an initial surrogate model for the

failure probability computation. During the iteration process, our

scheme adaptively updates the underlying gPC surrogate model

with new samples and increases the polynomial orderwhen possible.

This results in a highly efficient method for failure probability
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Figure 8: Error convergence versus iteration count of the
adaptive algorithm when ∆M0 = 20, 80 and 100 respectively
in the Microelectronics Example with α = 3log(N (k )д ).

computation. It not only eliminates the need for a priori surrogate

model, which is usually not readily available for many practical

problems, but also improves the overall performance with fewer

samples from the true limit state than those of the original hybrid

method.
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